Krylov implicit integration factor methods for spatial discretization on high dimensional unstructured meshes: Application to discontinuous Galerkin methods
نویسندگان
چکیده
Integration factor methods are a class of ‘‘exactly linear part’’ time discretization methods. In [Q. Nie, Y.-T. Zhang, R. Zhao, Efficient semi-implicit schemes for stiff systems, Journal of Computational Physics, 214 (2006) 521–537], a class of efficient implicit integration factor (IIF) methods were developed for solving systems with both stiff linear and nonlinear terms, arising from spatial discretization of time-dependent partial differential equations (PDEs) with linear high order terms and stiff lower order nonlinear terms. The tremendous challenge in applying IIF temporal discretization for PDEs on high spatial dimensions is how to evaluate the matrix exponential operator efficiently. For spatial discretization on unstructured meshes to solve PDEs on complex geometrical domains, how to efficiently apply the IIF temporal discretization was open. In this paper, we solve this problem by applying the Krylov subspace approximations to the matrix exponential operator. Then we apply this novel time discretization technique to discontinuous Galerkin (DG) methods on unstructured meshes for solving reaction–diffusion equations. Numerical examples are shown to demonstrate the accuracy, efficiency and robustness of the method in resolving the stiffness of the DG spatial operator for reaction–diffusion PDEs. Application of the method to a mathematical model in pattern formation during zebrafish embryo development shall be shown. 2011 Elsevier Inc. All rights reserved.
منابع مشابه
A Discontinuous Galerkin Method for the Navier-Stokes Equations on Deforming Domains using Unstructured Moving Space-Time Meshes
We describe a high-order accurate space-time discontinuous Galerkin (DG) method for solving compressible flow problems on two-dimensional moving domains with large deformations. The DG discretization and space-time numerical fluxes are formulated on a three-dimensional space-time domain. The scheme is implicit, and we solve the resulting non-linear systems using a parallel Newton-Krylov solver....
متن کاملLocally implicit discontinuous Galerkin method for time domain electromagnetics
In the recent years, there has been an increasing interest in discontinuous Galerkin time domain (DGTD) methods for the solution of the unsteady Maxwell equations modeling electromagnetic wave propagation. One of the main features of DGTD methods is their ability to deal with unstructured meshes which are particularly well suited to the discretization of the geometrical details and heterogeneou...
متن کاملA sparse and high-order accurate line-based discontinuous Galerkin method for unstructured meshes
We present a new line-based discontinuous Galerkin (DG) discretization scheme for firstand second-order systems of partial differential equations. The scheme is based on fully unstructured meshes of quadrilateral or hexahedral elements, and it is closely related to the standard nodal DG scheme as well as several of its variants such as the collocation-based DG spectral element method (DGSEM) or...
متن کاملAn Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems
We present an efficient implicit time stepping method for Discontinuous Galerkin discretizations of the compressible Navier-Stokes equations on unstructured meshes. The Local Discontinuous Galerkin method is used for the discretization of the viscous terms. For unstructured meshes, the Local Discontinuous Galerkin method is known to produce non-compact discretizations. In order to circumvent th...
متن کاملKrylov Integration Factor Method on Sparse Grids for High Spatial Dimension Convection-Diffusion Equations
Krylov implicit integration factor (IIF) methods were developed in Chen and Zhang (J Comput Phys 230:4336–4352, 2011) for solving stiff reaction–diffusion equations on high dimensional unstructured meshes. The methods were further extended to solve stiff advection–diffusion–reaction equations in Jiang and Zhang (J Comput Phys 253:368–388, 2013). Recently we studied the computational power of Kr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 230 شماره
صفحات -
تاریخ انتشار 2011